

Exploring the impact of transfer learning on GAN-based HRTF upsampling

A. Hogg, H. Liu, M. Jenkins and L. Picinali

Head related transfer functions

What is 3D audio?

How can I simulate it?

Spherical loudspeaker array

Do I really need so many loudspeakers?

• Head Related Transfer Function (HRTF)

But is measuring individual HRTFs practical?

- Controlled environment
- Expensive setup
- Time consuming

One Possible solution: HRTF spatial upsampling

Spatially upsampling low-resolution HRTFs

Super-resolution generative adversarial networks (GANs)

Super-resolution GANs

Motivation

• GANs have been shown to work well for the task of upsampling images

4x SRGAN

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., "**Photo-realistic single image super-resolution using a generative adversarial network**," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017. 11

Super-resolution GANs

Can SRGANs be used to upsample HRTF data?

- HRTF data is not uniformly spaced (like pixels in an image)
- HRTF data occupies an extra dimension (unlike images that are only 2D in space)
- The amount of HRTF data is limited (whereas there are millions of images available to train SRGANs)

One Possible solution to HRTF data occupying an extra dimension:

- Augmenting the data so that it can be processed in the same way as 2D images
 - For example, 3D to 2D projections

One Possible solution to the limited amount of HRTF data:

• Increase data available by generating synthetic data and use of transfer learning

The problem of spherical data

The cubed sphere projection

How to fit a sphere to a grid?

Problem

 Projections can distort the relationship between two adjacent points, complicating kernel weight sharing

Solution

- Use six gnomonic projections onto tangent planes that form a cube around the sphere (cubed sphere)
 - The advantage is that the grid cells are more uniformly-sized

Standard polar coordinates

Cubed sphere

Original data & projected data

Flattened cube

Interpolated HRIRs

Original data

Barycentric interpolated data

This project has received funding from the European Union's Horizon 2020 research and innovation programme Grant agreement No. 101017743

Padding based on adjacent cube faces

This project has received funding from the European Union's Horizon 2020 research and innovation programme Grant agreement No. 101017743

The problem of small data sets

Transfer learning

Parametric pinna model data

The Parametric Pinna Model (PPM) is used to randomly generate meshes for synthetic HRTF data generation.

+

Head stitching

Mesh Grading

Original mesh (left, 63,472 triangles) and mesh after Mesh Grading (right, 20,362 triangles)

This project has received funding from the European Union's Horizon 2020 research and innovation programme Grant agreement No. 101017743

BEM calculated HRTF from 3D meshes

20/34

Head model

Comparison between measured and BEM data

Transfer learning

Possible solutions

Imperial College

London

- Train the entire network with synthetic data, keep the parameters and biases unchanged, and re-train the entire network with measured data
- Train the entire network with synthetic data, and then freeze the parameters and biases of the lower layers of the network and only train the higher layers with measured data
- Train the entire network with synthetic data first, then only reinitialize the higher layers and train the entire network with measured data
- Train half of the network with synthetic data, then add new layers and train the entire network with measured data

SONICOM

Transfer learning from generated low-resolution parametric pinna HRTF data

Imperial College

London

SONICOM

2) Reinitialize output layers of the Generator and Discriminator and retain all layers on real HRTF data

Network architecture

Generative adversarial network

Discriminator and Generator

Imperial College

AXD

forum acusticum 2023

Results

Statistical and perceptual

Data used for training:

- 1,000 SONICOM synthetic HRTFs Transfer learning training data (Exp 1)
- 203 SONICOM HRTFs Transfer learning training data (Exp 2)
- 170 ARI HRTFs Training data
- 51 ARI HRTFs Evaluation data

Spectral distortion metric results

Spectral distortion metric:

SONICOM

Imperial College

London

• The SD of two HRTFs are first averaged over frequency bands, then averaged over measurement nodes (impulse responses)

$$SD = \frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{1}{M} \sum_{k=1}^{M} \left(20 \log_{10} \frac{|HRTF(f_k, \phi_n)|}{|HRTF'(f_k, \phi_n)|} \right)^2}$$

Spectral distortion metric results

1/2

London

SONICOM

Spectral distortion metric results

Imperial College

London

SONICOM

forum**acusticum** 2023

Barumerli2022 model

Barumerli et al. designed a Bayesian spherical sound localization model that could predict performances of individuals using different HRTFs through a mathematical model

forum acusticum 2023

Localisation evaluation - Polar Accuracy Error (Elevation Bias)

This project has received funding from the European Union's Horizon 2020 research and innovation programme Grant agreement No. 101017743

SONICOM

Imperial College

London

forum acusticum 2023

Localisation evaluation - Polar RMS Error

SONICOM

Imperial College

London

forum acusticum 2023

Localisation evaluation - Quadrant Error

Thank You

