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Imperial College GT = ground truth
London GT-SAD = GT speech activity detection

_ BUT = Brno University of Technology
Introduction
* Human-based speaker diarization experiments:

« Experiment 1: no prior information — 13 reviewers — baselines
pyannote.audio V2 and V1

- Experiment 2: start from ground truth speech activity detection
(GT-SAD) — 10 reviewers — baselines pyannote.audio V1, BUT BDII

and BUT ResNet101

« Experiment 3: start from ground truth blank labels (GT-labels) — 10
reviewers — no baselines

* 5-minute extract of AMI 2008a meeting headset recordings
- 4 speakers, 3 female and 1 male
* significant overlapping speech (around 4.45 to 8.52% from GT)
* reviewers used Audacity to segment (if relevant) and label
* Instructions for consistent application (e.g. 300 ms pauses)

- Effect of GT differences and forgiveness collars in scoring
S
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Speaker Diarization

« Distinguishing speakers and specifying times they speak in a speech recording
or live player
« Often referred to as “who spoke when”

* ... but most diarization systems distinguish speakers but do not identify
them
« diarization challenges expect systems not to have heard speakers before

* nonetheless, current top performing systems train on labelled data (e.g.
VoxCeleb 1 and 2) for a discriminative model, then make generative

* Inaccurate and inconsistent labelling of speaker and speech boundaries is a
big problem for both training and scoring
* subjectivity in human ground truth labelling
» splitting speech on pauses: AMI general v NIST 300 ms v DIHARD 200ms
« scoring moving away from forgiveness collars and excluding overlapping
speakers
« use of validation/development sets helps to a degree
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M = miss

Imperial College FA = false alarm
London SE = speaker error

UEM = unpartitioned evaluation map

Evaluating speaker diarization performance

- Standard time-based diarization error rate (DER) measure

Ty + Tpa+ T
DER= 24 % _ M+ FA, +SE,
TTOTAL

« Overlapping speakers included
- Generally exclude laughter/coughing etc, but some subjectivity
- Examples imprecise v precise GT labelling:

UEM 10 UEM 10
[ 157110 6.5 [
9 |
et | | | GT |1 1975, '
0.5 0.5
System System

Fig. 1 — imprecise GT labelling (11.1%  Fig. 2 — precise GT labelling with overlaps

DER collar, 11.8% no collar) (0% DER collar, 16.7% no collar)
e
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STD = standard deviation
exc. = excludes laughter/coughing
iInc. = includes laughter/coughing
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Experiment 1 Results

« Scores for human reviews very considerably with 2 outliers
« Sensitive to ground truth chosen — Table Il DERs in %

GT

250 ms Means.

250 ms STDs | 0 ms Means | 0 ms STDs
AM] GT1 11.93 1.51 18.94 1.43 exc.
GT2 11.02 1.46 17.20 1.45 INC.
BUT GT3 8.95 1.60 15.60 1.53 exc.
GT4 10.27 1.66 17.62 1.44 INC.

* Predicting same number of segments as ground truth used is
biggest driver of good performance
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Experiment 1 Results

« Forgiveness collars reduce DER means, but increase STDs
* means down from 15.60% to 8.95% (+250 ms to 0 ms)
* but STDs up from 1.53% to 1.60%

 this would not be expected if differences were primarily due to
Insignificant timing differences around speaker boundaries

* pyannote.audio V2 (but not V1) outperforms humans on
segmentation/ timings
* was it just because it got closer to the right number of
segments than all the human reviewers?

* had been trained on AMI generally
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Experiment 2 Results

* Much better results than for Experiment 1

GT 250 ms Means. 250 ms STDs | 0 ms Means | 0 ms STDs
GT3 2.03 0.64 4.49 0.73

« mean DERs improved 11.11% without collar, 6.92% with
* Misses reflect missed overlapping speakers
« 7 of 10 human reviews outperformed best baseline system
* 9 of 10 in the speaker error component
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Experiment 3 Results
- Scores dramatically better

GT

250 ms Meansf

250 ms STDs

0 ms Means

0 ms STDs

GT3

0.68

0.69

1.41

1.03

* misses and false alarms naturally fall to zero

« speaker errors improve, but still non-zero due to multiple
overlapping speaker difficulties and inconsistent speaker pitch
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Reviewer Observations

* Recordings generally clear, but heavy breathing annoying
 old style microphones in front of mouths
- Several reviewers noted the female speakers had similar pitch

« used semantic information to distinguish them at times rather
than vocal pitch or timbre

« 2 reviewers who were non-native English speakers felt they
were at a disadvantage compared to native English speakers

* times when an existing female speaker interjected in a higher-
pitched voice or showing more emotion were often incorrectly
thought to have been a different speaker altogether

« All reviewers coped well with 2 overlapping speakers, but not 3
- difficult because overlaps tended to be short

« not all vocal sounds easy to classify as speech or not
...
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Imperial College ASR = automatic speech recognition
London

Conclusions and Further Information

» Use of forgiveness collars not recommended in scoring

« Scoring sensitivity to ground truth means probably better off
combining ASR with diarization and assigning word error rates
scores based on correct speaker allocation

* ... though only an option if ASR involved, there are other
uses of speaker diarization

* Humans struggle with timings, but still better at distinguishing
speakers

* Instructions to reviewers and results at
* https://github.com/swm1718/HumanReviews
 https://tinyurl.com/4ys4baTt
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