8 November 2022

Studying Human-Based Speaker Diarization and Comparing to State-of-the-Art Systems

Simon W. McKnight Speech and Audio Processing Lab Communications and Signal Processing Group Electrical and Electronic Engineering

GT = ground truth GT-SAD = GT speech activity detection BUT = Brno University of Technology

Introduction

- Human-based speaker diarization experiments:
 - Experiment 1: no prior information 13 reviewers baselines pyannote.audio V2 and V1
 - Experiment 2: start from ground truth speech activity detection (GT-SAD) – 10 reviewers – baselines pyannote.audio V1, BUT BDII and BUT ResNet101
 - Experiment 3: start from ground truth blank labels (GT-labels) 10 reviewers – no baselines
- 5-minute extract of AMI 2008a meeting headset recordings
 - 4 speakers, 3 female and 1 male
 - significant overlapping speech (around 4.45 to 8.52% from GT)
 - reviewers used Audacity to segment (if relevant) and label
 - instructions for consistent application (e.g. 300 ms pauses)
- Effect of GT differences and forgiveness collars in scoring

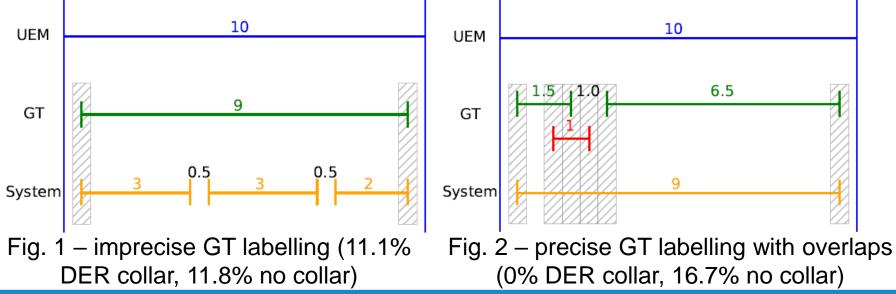
Speaker Diarization

- Distinguishing speakers and specifying times they speak in a speech recording or live player
- Often referred to as "who spoke when"
 - ... but most diarization systems distinguish speakers but do not identify them
 - diarization challenges expect systems not to have heard speakers before
 - nonetheless, current top performing systems train on labelled data (e.g. VoxCeleb 1 and 2) for a discriminative model, then make generative
- Inaccurate and inconsistent labelling of speaker and speech boundaries is a big problem for both training and scoring
 - subjectivity in human ground truth labelling
 - splitting speech on pauses: AMI general v NIST 300 ms v DIHARD 200ms
 - scoring moving away from forgiveness collars and excluding overlapping speakers
 - use of validation/development sets helps to a degree

M = miss FA = false alarm SE = speaker error UEM = unpartitioned evaluation map

Evaluating speaker diarization performance

- Standard time-based diarization error rate (*DER*) measure $DER = \frac{\tau_M + \tau_{FA} + \tau_{SE}}{\tau_{TOTAL}} = M_{\tau} + FA_{\tau} + SE_{\tau}$
- Overlapping speakers included
- Generally exclude laughter/coughing etc, but some subjectivity
- Examples imprecise v precise GT labelling:



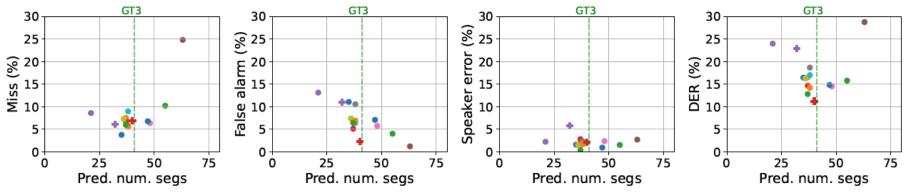
STD = standard deviation exc. = excludes laughter/coughing inc. = includes laughter/coughing

Experiment 1 Results

- Scores for human reviews very considerably with 2 outliers
- Sensitive to ground truth chosen Table II DERs in %

						_
	GT	250 ms Means	250 ms STDs	0 ms Means	0 ms STDs	
AMI	GT1	11.93	1.51	18.94	1.43	exc.
7 \1V11	GT2	11.02	1.46	17.20	1.45	inc.
BUT	GT3	8.95	1.60	15.60	1.53	exc.
DUT	GT4	10.27	1.66	17.62	1.44	inc.

 Predicting same number of segments as ground truth used is biggest driver of good performance



Experiment 1 Results

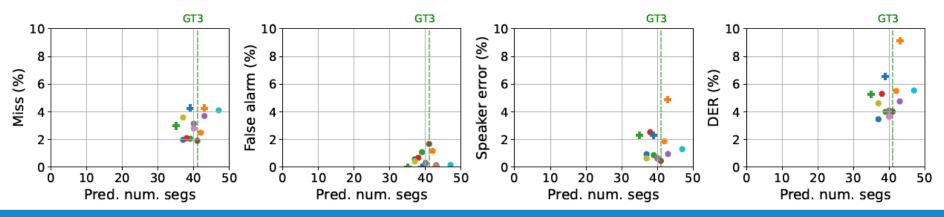
- Forgiveness collars reduce DER means, but increase STDs
 - means down from 15.60% to 8.95% (±250 ms to 0 ms)
 - but STDs up from 1.53% to 1.60%
 - this would not be expected if differences were primarily due to insignificant timing differences around speaker boundaries
- pyannote.audio V2 (but not V1) outperforms humans on segmentation/ timings
 - was it just because it got closer to the right number of segments than all the human reviewers?
 - had been trained on AMI generally

Experiment 2 Results

Much better results than for Experiment 1

GT	250 ms Means	250 ms STDs	0 ms Means	0 ms STDs
GT3	2.03	0.64	4.49	0.73

- mean DERs improved 11.11% without collar, 6.92% with
- Misses reflect missed overlapping speakers
- 7 of 10 human reviews outperformed best baseline system
 - 9 of 10 in the speaker error component

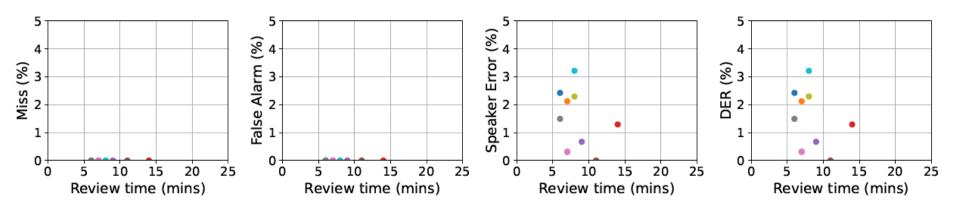


Experiment 3 Results

Scores dramatically better

GT	250 ms Means	250 ms STDs	0 ms Means	0 ms STDs
GT3	0.68	0.69	1.41	1.03

- misses and false alarms naturally fall to zero
- speaker errors improve, but still non-zero due to multiple overlapping speaker difficulties and inconsistent speaker pitch



Reviewer Observations

- Recordings generally clear, but heavy breathing annoying
 - old style microphones in front of mouths
- Several reviewers noted the female speakers had similar pitch
 - used semantic information to distinguish them at times rather than vocal pitch or timbre
 - 2 reviewers who were non-native English speakers felt they were at a disadvantage compared to native English speakers
 - times when an existing female speaker interjected in a higherpitched voice or showing more emotion were often incorrectly thought to have been a different speaker altogether
- All reviewers coped well with 2 overlapping speakers, but not 3
 - difficult because overlaps tended to be short
 - not all vocal sounds easy to classify as speech or not

Conclusions and Further Information

- Use of forgiveness collars not recommended in scoring
- Scoring sensitivity to ground truth means probably better off combining ASR with diarization and assigning word error rates scores based on correct speaker allocation
 - ... though only an option if ASR involved, there are other uses of speaker diarization
- Humans struggle with timings, but still better at distinguishing speakers
- Instructions to reviewers and results at
 - <u>https://github.com/swm1718/HumanReviews</u>
 - <u>https://tinyurl.com/4ys4ba7t</u>